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T H R E E  T H E O R E M S  ON T H E  E R R O R  OF S O L U T I O N  OF D I F F E R E N T  E Q U A T I O N S  

OF T H E  T H E O R Y  OF SHELLS W I T H  A S I N G U L A R  R I G H T  SIDE 

V .  V .  N e r u b a i l o  UDC 539.3 

It is known that the behavior of shells under the action of loads of a singular character (in particular, 
concentrated and piecewise-constant) can be described satisfactorily by differential equations in eighth-order 
or higher-order partial derivatives, depending on the rigorousness of the initial hypotheses. Relaxation of the 
hypotheses made the equations of the theory of shells similar to the equations of the three-dimensional theory 
of elasticity. The theory of shells was constructed as early as the last century, when effective calculation 
facilities were practically lacking and the necessity of refining models was increasing. The high order of the 
equations of the theory of shells generated a need for the development of new theories, which reduced, as 
a rule, to simplification of the equations of the general theory of shells. This is true, for example, for the 
theory of shallow shells (the Vlasov-Donnel equations for cylindrical shells) and for the semi-momentless 
theory of shells [1]. These equations are used independently in solution of problems of strength and stability 
of structures, and also as components in construction of solutions by asymptotic synthesis methods (ASM) 
[2, 3], in which they play the role of the so-called elementary stress states [4]. The latter are "glued" by a 
certain procedure [2] to give, as a result, the total stress-strain state of the shell. This approach proved to 
be very effective in determining the stress-strain state of shells subjected to the action of loads of a singular 
character. In the present paper, the upper bounds of the error of solutions found using the ASM are obtained. 

We consider the asymptotic error of approximate equations. According to [4], by asymptotic error is 
meant the modulus of the ratio of the largest omitted term of the governing equation to the largest retained 
term. Let there be a differential equation in partial derivatives of the rth order (r is an even number) with a 
small parameter h2, at the higher derivative or ahead of the operator containing the higher derivatives: 

(h2L + M)~(a,/3) = af(a,/3). (1) 

Here s is a differential operator that contains partial derivatives of order r and lower, M is an operator that 
contains derivatives of order (1/2)r, f ( a ,  ~) is a piecewise-constant function, and a is a constant coefficient. 

In the case of circular cylindrical shells, the operators L and M take the following form: 
in the general theory of shells 

o 4 
f~ ---- V 2 V 2 ( V  2 -F 1) 2 - 2 ( 1  - u)( 04 3v 04 

~ 4  0~2"~0#2'] ' M --  0o~4; (2) k 

in the theory of shallow shells (the Vlasov-Donnel equations) 

04 
L = v Z v 2 v 2 v  2, M = 

(~O~4 ' 

in the semimomentless theory of shells 

L = - ~  +1  , 

V2_ 02 02 
- 0a 2 + 082; (3) 

04 
M = On4; (4) 
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in the theory of simple edge effect 

and for a flexural or tangential state 

(94 
L -  0a4, M - - l ;  (5) 

= V2~ 2, M = 0. (6) 

Let the stress-strain state occurring in a shell be characterized by a quantity that will be called the 
variability factor of the stress state. The variability in a given region of the shell surface means the modulus 
of the ratio of the average value of the derivative of a function to the average value of the function. Let the 
variability factor p be related to the relative shell thickness and the harmonic number n in the Fourier series 
expansion of the function f ( a ,  j3) in terms of the circumferential coordinate ]~ by the relation [4]: 

n = h ,  p, h2. = h2/12 R 2. (7) 

In relation (7), the quantity n characterizes the variability of the nth harmonics of the Fourier expansion 
of the function f ( a ,  8) and also the variability of solutions in the form of series for the resolvent function and 
its derivatives. 

Depending on the quantity p, one can obtain different approximate equations of the theory of shells, 
whose operators are written in (2)-(6). These equations, as was noted, are of independent interest and describe 
one or another elementary stress in one of the ASM. 

The behavior of the asymptotic error e versus p is shown in Fig. 1 (curve 1 refers to the shallow shell 
theory, curve 2 refers to semimomentless theory and edge effect, and curve 3 to equations of the flexural and 
tangential states) [2, 3]. The equality of the asymptotic error to unity for p = 1/2 means that in going over 
from full equations to approximate equations, we omit terms of the same order compared with the remaining 
terms in the characteristic equation (and in the governing equation, accordingly). 

Suppose we constructed a stress-strain state of a shell under the action of a concentrated and piecewise- 
constant load on it, using as a basis equations of the general theory of shells, and then equations of shallow 
shells (the Vlasov-Donnel equations). Using the Fourier integral method, we write a solution for the case of 
a piecewise-constant function f((~, 8). Then, using equations of the general theory of shells, we obtain 

6(1 - v 2) (_R~ 3 P___ ~ ? sin(~0A 
r  ~ao-~o \ h )  ER ~ O, c o s k n ~ s A L ( A , n )  cos•AdA, 

. = 0  0 
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Here 

0, cosknJ  w(A,n)sina0A 
rao~o n=o o AL(A, n) cos oAdA, (8) 

oo 
1 ~ [ gi(A, n) sin a0A 

P - 1 a i ( ~ ' ~ ) -  2~-a0~0 ~ Oncoskn~ j -AL-~,n) cos ~AdA. 
n=O 0 

~ ( ) ~ , n )  = ()k 2 + k 2 n  2 - 1 ) 2 ( ~  2 -4- k 2 n 2 )  2 + 2 (1  --  V)~2( ,~ 4 --  ]g4rt4) -t- (1 - -  V2)C-2)k  4, 

w(A ,n )=(A  2+k2n2)  2, g l ( A , n ) = ( A  2 + u k 2 n  2 - u ) w ( A , n ) + ( 1 - u 2 ) A 2 k 2 n  2, 

g2( ,n) = (k n 2 + - = h2,, (9 )  

kil0 2 
0 , ,=  ( n = 0 ) ,  0,, = - -  sin kn~0 ( n = 1 , 2 , 3 , . . . ) ;  

~r 71"72 

P is the total load acting on one of the k rectangular regions located in the initial section of an infinitely long 
shell; and 2a0R and 2~0R is the length of the loaded region of the shell surface in the longitudinal and axial 
directions, respectively. 

We can write a solution for the case of k concentrated radial forces P according to (8) if we pass to 
the limit a0 ~ 0 and/3o ~ 0. 

The actual error in calculating the resolvent function and the desired factors in the shell using 
approximate equations is defined as e = 1 - 77, where r/is the ratio of the value of some factor (displacement, 
force or moment) determined from these equations to the corresponding value obtained from the theory of 
shells. Then the Vlasov-Donnel equations lead to 

T h e o r e m  1. The error �9 of the resolving function ~(a,~) and its derivatives to the (r - 1)th order 
inclusive is minimal for concentrated action and increases with an increase in the loaded region, remaining 
the least for higher-order derivatives and for the desired factors containing these derivatives. 

Hence it follows that  in formulas (8) the greatest error appears for the normal displacement w and the 
least for the longitudinal G1 and circumferential G2 bending moments. This is supported by numerous results 
for finite length shells [5]. 

We consider loading of a shell along segments of the generatrix of different length. The load is symmetric 
about the middle of the shell which is hinge-supported at the edges. 

Figure 2 shows the error of the radial displacement e for shells with different thickness versus the length 
of the loaded generatrix segment. Here curves 1-3 correspond to Rib = 15, 100, and 300, l[R = 10, where 1 
and R are the length and radius of the shell. 

For the longitudinal force, the longitudinal moment,  and the circumferential moment  (curves 1-3, 
respectively) similar dependences are given in Fig. 3 for a shell with l]R = 10 and R/h  = 15. From Figs. 2 
and 3 one can see that the greatest error is obtained for the radial displacement. For all factors, the errors 
increase with an increase in f iR  and in the length of the loaded segment, reaching the largest value for 
loading over the entire generatrix of the shell. For thinner shells, the error e is smaller, and this agrees with 
the conclusions of [6]. When shells are loaded over square regions (or0 = ~0 = 60), as in the case of loading 
along the generatrix segments, the greatest error e is obtained for the radial displacement. 

Figure 4 shows the error of the radial displacement for loaded regions of various dimensions versus the 
relative thickness of a shell with I /R = 8; the load is applied at the middle of the shell; curves 1-5 correspond 
to 60 = 0.25, 0.125, 0.0625, 0.03125, and 0 (60 = 0 corresponds to the action of a concentrated force). Note 
one important circumstance responsible for the choice of an infinitely long shell as the subject of study in 
this work: for a fixed shell thickness and fixed dimensions of the loaded region, an increase in the shell length 
always leads to an increase in the error. 

Note that the solution based on the Vlasov-Donnel equations is obtained by subsifitution of simpler 
equations for relations (9): 

4,  = = ( 1 0 )  
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It is of interest to compare the errors e of the resolvent function, its derivatives, and the desired force 
and deformation factors for rectangular ([a[ ~ a0, [/31 < 30) and square ([a[ ~ 60, [/3[ < 60) loaded regions. 
where 60 = max(a0, 30)). In this case, the following theorem holds 

T h e o r e m  2. Tile error r in loading a shell over a square region is the upper bound of the error ~ for 
any rectangular region inscribed in this square region. 

Let now a stress-strain state be constructed on the basis of one of the two ASM rather than on the 
differential equation of the general theory of shells. 

When the first of the ASM is used, the full stress state for n <~ fi is obtained on the basis of equations 
of semimomentless theory (4) and edge-effect theory (5), and for n/> fi + 1 it is obtained on the basis of the 
Vlasov-Donnel equations (3). Then, instead of the solution by the general theory of shell, written in the form 
of (8) we obtain 

ERP_lw(a ,  f l ) _ 6 ( 1 - v 2 )  ( R ) 3 [ f i  y sina0A 1 nfi 1 
lrao/3o ~.=o 8. cos kn~ o A(A4 + 4ze4) cos aAdA + ~ = 8,, cos kn3 

f w ~ sinao,~ oo f w(,~,n) sin ao,~ ] 
x A(A 4 + 4#4) cos aAdA + ~ On cos kn3 A[(A 2 + k2n2)4 + 4ae4A4 ] cos aAdA , 

0 ~+l  0 (11) 

1 [ ~ f Asina0A 1 f i  
-- v ~ On cos kn3 A4 + 4m 4 cos aAdA + ~ On cos kn3 p-1G2(a '3 )  2a'ao3o. ,,-o o 

g~,, sin ao,~ ~ f g2 ()t, n)sin aoA ] 
x A(A4 + 4#4) cos aAdA + ~ O. cos kn3 A[(A 2 + k 2 n 2 )  4 Jr" 4r  4,~4] COS o~)~dA . 

0 ~+1  0 

As the harmonic number fi for which the solutions are "glued" according to Eqs. (3)-(5), we use the 
value of n found from the formula of [3] and rounded to the nearest integer: 

12 4 -.~ (2/k4)v/-3(R/h). (12) 

Using the second ASM, we obtain a solution by simplifications of solution (11), more precisely, by 
simplification of the latter terms, which are solutions of Eq. (3). The full stress state is thus formed by 
the semimomentless solution, the edge effect (n ~< fi), the solution based on the Vlasov-Donnel equations 
(fi -t- 1 < 12 ~< n*), and the flexural state (12/> 12' -t- 1): 

6 ( 1 - v 2 ) ( R ) 3 [ ~  ~ sina0A 
-  o7o e.cosknZ ;(;4 +4 4) cos ;d; 

---- 0 
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(x) 

+ ~ 0,~ cos kn/3 w, sin a0A 
n=l 0 A(A4 + 4#4n) cos oAdA 

+ E On a[( 2 + + 4 4 41 cos  Ada + O. cos a( 2 + k n2)2 cos 
fi+l 0 n*+l 0 

(13) 
P-'C2(a,~)- 2ra0/30 u O, coskn/3 / AsinaoA j A4 + 4ae4 cos aAdA 

n=0 0 

1 ~ ;g~nsinaoA 
+ ~ On COS/gn~ ,~(,~4 + 4#4) cos aAdA 

n=l 0 

" 7 ] n f g2(A, n) sin C~0A co 
-I- fi+IE Oncoskn~ 0 ,~[(,~2 2 r. k2n2)4 + 4~e4A4] cos aAdA + n.+lE OnCOS]C, nfl j (k2n2~--~-~n--~ + uA2) sin a~ cos aAdA . 

0 
In relations (11) and (13), the notation is as follows: 

W~ = k4n4; g~n "-~ k4n4( k2n2 - 1); ~4 = 3(1 -- u2)(R/h) 2. 

As the harmonic number n*, we use the value n found from the formula of [3] and rounded to the 
nearest integer n: 

n 4 = (2/k4)(1 - u2)(R/h) s/2. (14) 

Thus, using the second ASM, one can obtain the stress-strain state of a shell by formulas (13). In this 
ease, the solutions of the approximate equations (3)-(6) are "glued" for values fi, and n* determined form 
formulas (12) and (14). Both methods give solutions that practically coincide with the exact solution with 
a much shorter time of numerical realization. In addition, the ASM make it possible to obtain convenient, 
readily visible analytic solutions or finite calculation formulas. 

As is known, the error of the theory of shells constructed with accuracy to Kirchhoff-Love hypotheses is 
a quantity of order h/R as compared with unity. The question of estimation of the errors of various approximate 
equations and ASM arises [6-9]. Let we have a differential equation (1) with an error of order h/R compared 
with unity [6-8], containing a small parameter h, 2 at the higher-order derivatives. For split equations that 
follow from (1), curves of variation in the asymptotic error are given in Fig. 1. The criterional value fi is 
found from the condition of minimum of the asymptotic error, and the value n* is found from the condition 
of possible neglect of terms of order (h/R) 1/2 compared with unity in Eq. (1) (the latter circumstance makes 
the elliptic equation of the general theory a polyharmonic equation V8r = 0). Then, the following theorem 
holds. 

T h e o r e m  3. If the error of the exact equation of the theory of shells (1) containing the small parameter 
h 2 at the higher-order derivatives is of the order of h/R compared with unity, the error of the first and second 
ASM does not exceed a quantity of order (h/R) if2 compared with unity. 

The ample numerical material given in [2, 3, 5] and also in other sources confirms the validity of 
the statements formulated in the above theorems. However, the question of analytic proof of the statements 
formulated as the theorems remains heuristic. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. N2J000). 
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